Health
Revolutionizing Healthcare: AI and Machine Learning Transform Medical Imaging
In a significant leap for modern healthcare, artificial intelligence (AI) and machine learning (ML) are revolutionizing the field of medical imaging, enhancing diagnostic accuracy, speeding up analysis, and improving patient outcomes across the globe.
Medical imaging technologies like X-rays, CT scans, MRIs, and ultrasounds have long been critical tools for diagnosing a range of conditions. However, interpreting these images can be time-consuming and prone to human error. AI and ML are now stepping in to augment radiologists’ capabilities, offering tools that can rapidly and accurately detect anomalies, such as tumors, fractures, and lesions. Recent studies have shown that AI algorithms can match or even surpass human radiologists in diagnosing certain conditions. For instance, Google Health’s AI model demonstrated a higher accuracy rate than expert radiologists in detecting breast cancer from mammograms. Similarly, researchers from MIT and Harvard have developed ML systems capable of identifying early signs of Alzheimer’s disease from brain scans with remarkable precision.
How It Works-Machine learning models are trained on vast datasets of medical images. These systems learn to recognize patterns and anomalies by comparing thousands — sometimes millions — of examples. With each new image, the model becomes smarter, constantly refining its accuracy.
Deep learning, a subset of ML that mimics the neural networks of the human brain, is particularly effective in image recognition. These networks can highlight subtle variations that may be missed by the human eye, such as early-stage tumors or microscopic tissue changes.
Real-World Impact-Hospitals and healthcare providers are already reaping the benefits. AI-driven imaging tools are reducing diagnosis time from hours to minutes, allowing for faster treatment decisions. In rural and underserved areas, where access to specialists is limited, AI-powered portable devices are proving to be game changers.
In India, for example, AI tools are being used to screen for tuberculosis and diabetic retinopathy using mobile X-ray vans and smartphone-based fundus cameras. In the United States, several hospitals have integrated AI systems to prioritize emergency cases by flagging critical findings, such as brain hemorrhages, in real time.
As AI and ML continue to evolve, their integration into medical imaging holds the potential to make healthcare more efficient, accurate, and accessible—ultimately saving lives and shaping the future of medicine.
Dr Jasneet Chawla
Associate Professor
Chandigarh University
-
Travel4 weeks agoMichael Hopkins, Denver: Rethinking the Airport Experience for Modern Travelers
-
Tech4 weeks agoAI Won’t Replace Storytelling: Nathalie Kyriakou On The Human Side Of Marketing
-
Tech3 weeks agoJonathan Amoia’s Insights on the Intoxication of Artificial Intelligence
-
Education2 weeks agoBelfast AI Training Provider Future Business Academy Reaches Milestone of 1,000 Businesses Trained
-
Business3 weeks agoAdel En Nouri’s Tips for Writing a Business Plan in 2026 That Actually Works
-
Health3 weeks agoTolga Horoz: How Developing an Interest in How People Solve Problems Shapes Better Thinking and Innovation
-
Cryptocurrency3 weeks agoWhen Crypto Markets Calm Down: How NB HASH Builds Stable Passive Income Through AI Computing Power
-
Sports2 weeks agoUnited Cup 2026: Full Schedule, Fixtures, Format, Key Players, Groups, Teams, Where and How to Watch Live

